motion in a plane: use of polar coordinates

a- circular motion
A particle moves in a circular path (radius $=R$) in the xy plane.
Suppose that at time t its cartesian components are given by

$$
x(t)=R \cos \theta, \quad y(t)=R \sin \theta
$$

where θ is the angular position relative to the x axis measured in the counterclockwise sense. During the motion, in a time Δt the angle changes by $\Delta \theta$, i.e., the new angular position of the particle becomes $\theta+\Delta \theta$; and correspondingly at the later time $t+\Delta t$ the new x coordinate becomes

$$
x(t+\Delta t)=R \cos (\theta+\Delta \theta)
$$

Therefore, during the time interval Δt, the x coordinate changes by

$$
\begin{aligned}
\Delta x & =x(t+\Delta t)-x(t) \\
& =R\{\cos (\theta+\Delta \theta)-\cos \theta\}
\end{aligned}
$$

For small Δt, and hence for small $\Delta \theta$, one has the approximations

$$
\cos \Delta \theta \approx 1, \quad \sin \Delta \theta \approx \Delta \theta
$$

Thus, one writes

$$
\cos (\theta+\Delta \theta) \approx \cos \theta-\sin \theta \Delta \theta
$$

and consequently,

$$
\Delta x \approx-R \sin \theta \Delta \theta
$$

Similarly, the variation in the y coordinate can be obtained as given by

$$
\Delta y \approx R \cos \theta \Delta \theta
$$

The displacement vector is therefore

$$
\begin{aligned}
\Delta \overrightarrow{\mathbf{r}} & =\Delta x \hat{\mathbf{i}}+\Delta y \hat{\mathbf{j}} \\
& =R\{-\sin \theta \hat{\mathbf{i}}+\cos \theta \hat{\mathbf{j}}\}
\end{aligned}
$$

Adopting the convention that the curled fingers of the right hand follow the sense of rotation, one conforms the angular displacement to a vector quantity where the associated direction is that of the extended thumb. Thus, setting

$$
\Delta \vec{\theta}=\Delta \theta \hat{\mathbf{k}}
$$

one sees that the displacement vector can be expressed as

$$
\Delta \overrightarrow{\mathbf{r}}=\Delta \vec{\theta} \times \overrightarrow{\mathbf{r}}
$$

Dividing both sides by Δt, one obtains the relation between the translational and rotational (angular) velocities as

$$
\overrightarrow{\mathbf{v}}=\vec{\omega} \times \overrightarrow{\mathbf{r}}, \quad \vec{\omega}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{\theta}}{\Delta t}
$$

where

$$
\vec{\omega}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{\theta}}{\Delta t}=\frac{d \vec{\theta}}{d t}=\frac{d \theta}{d t} \hat{\mathbf{k}}
$$

Evidently, the three vectors $\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{v}}$ and $\vec{\omega}$ form a triad in the three respective directions $\hat{\mathbf{r}}, \hat{\theta}$ and $\hat{\mathbf{k}}$, where

$$
\begin{aligned}
\hat{\mathbf{r}} & =\cos \theta \hat{\mathbf{i}}+\sin \theta \hat{\mathbf{j}} \\
\hat{\theta} & =-\sin \theta \hat{\mathbf{i}}+\cos \theta \hat{\mathbf{j}}
\end{aligned}
$$

satisfying

1) $\quad \hat{\mathbf{r}} \times \hat{\theta}=\hat{\mathbf{k}}, \quad \hat{\mathbf{k}} \times \hat{\mathbf{r}}=\hat{\theta}, \quad \hat{\theta} \times \hat{\mathbf{k}}=\hat{\mathbf{r}}$
2) $\quad \frac{d \hat{\mathbf{r}}}{d t}=\hat{\theta} \frac{d \theta}{d t}=\hat{\theta} \omega, \quad \frac{d \hat{\theta}}{d t}=-\hat{\mathbf{r}} \frac{d \theta}{d t}=-\hat{\mathbf{r}} \omega$

i- constant angular velocity

Having obtained the velocity

$$
\begin{aligned}
\overrightarrow{\mathbf{v}} & =\vec{\omega} \times \overrightarrow{\mathbf{r}} \\
& =\omega R \hat{\theta}
\end{aligned}
$$

one can, by straightforward differentiation, derive the acceleration

$$
\text { 1) } \quad \begin{aligned}
\overrightarrow{\mathbf{a}} & =\frac{d}{d t}(\vec{\omega} \times \overrightarrow{\mathbf{r}}) \\
& =\vec{\omega} \times \overrightarrow{\mathbf{r}} \\
& =\vec{\omega} \times(\vec{\omega} \times \overrightarrow{\mathbf{r}}) \\
& =(\vec{\omega} \cdot \overrightarrow{\mathbf{r}}) \vec{\omega}-(\vec{\omega} \cdot \vec{\omega}) \overrightarrow{\mathbf{r}}) \\
& =-\omega^{2} \overrightarrow{\mathbf{r}}
\end{aligned}
$$

or
2) $\overrightarrow{\mathbf{a}}=\frac{d}{d t}(\omega R \hat{\theta})=\omega R \frac{d \hat{\theta}}{d t}=\omega R(-\hat{\mathbf{r}} \omega)=-\omega^{2} \overrightarrow{\mathbf{r}}$

In uniform circular motion the acceleration has magnitude: $a=\omega^{2} R$, and is directed radially inward toward the centre.

